TALLINN UNIVERSITY OF

Agent-Oriented Modelling: A Methodology for Modelling, Prototyping, and Simulation of Sociotechnical Systems

Dr. Kuldar Taveter Professor in Software Engineering Department of Informatics Tallinn University of Technology Tallinn, Estonia

Who am I?

- Name: Kuldar Taveter
- Position: Professor in Software Engineering, Head of the Laboratory of Sociotechnical Systems
- Education:
 - Dip.Eng., TUT, 1988
 - M.Sc., TUT, 1995
 - Ph.D., TUT, 2004
- Work experience:
 - 1985-1989: Institute of Cybernetics
 - 1989-1993: Private companies
 - 1993-1998: Department of Informatics of TUT
 - 1997-2005: Technical Research Centre of Finland
 - **2005-2008: The University of Melbourne, Australia**
 - 2008- : Department of Informatics of TUT
 - Jan-Aug 2011: University of South Carolina, USA
 - Apr May 2016: Shanghai University for Science and Technology, China
- Research areas: Agent-oriented software engineering, engineering of sociotechnical systems, multiagent systems, intelligent systems

Outline

- Overview of Estonia and my university
- Introduction to the AOM methodology
- The case study of aircraft turnaround simulation
- The case study of crisis management
- The case study of designing proactive services of e-government

Basic Facts about Estonia

- North-East Europe
- Capital Tallinn
- Population 1,34 mio
- Area 45 000 km2, comparable to the Netherlands and Denmark
- Parliamentary republic, independence Feb 24 1918
- EU, May 1 2004
- Schengen treaty, Dec 21 2007
- Euro zone, Jan 1 2011

People and society

- Nordic mindset
- Peaceful and hard-working people
- Safe and stable society
- 70/30% of population native Estonian/Russian-speakers
- Foreign languages widely spoken: English, Russian, German, Finnish....
- 3 million tourists visit Estonia every year

Nature and country

- 4 seasons
- Well-preserved nature
- 1520 islands
- 1000 lakes...

- Advanced IT society free Internet access in many public areas, on coaches, trains, etc.
- ID-card, e-Government, e-Taxation, e-Voting, e-School, e-Signing, e-Parking (no parking meters known!), e-Business Register, e-Land Register, e-Banking (no bank checks known!), etc.
- The development centre of Skype lies in Tallinn
- The headquarters of the EU IT Agency are located in Tallinn

Higher Education in Estonia

smartEstonia.ee

- Higher (tertiary) education is offered at universities and professional higher education institutions
- Ca 2/3 of the age group study in higher education institutions there are ca 68 000 students in Estonia
- There are **8 universities** in Estonia
- All institutions have introduced a bachelor-master (3+2) structure for most study programmes
- Growing number of English taught programmes are offered, especially at Master level.

Tallinn University of Technology

- □ Founded as an engineering college in 1918
- Acquired university status in 1936

- The second largest universityy in Estonia with about 14,200 students, 2,000 employees and with more than 54,000 graduates
- Courses taught in Estonian, English, and Russian
 International students ~7%
 - 134 Bachelor's, Master's, and Doctoral degree programs
- The biggest faculty of economics and business administration in Estonia

Faculty of Information Technology

- The number of students: approximately 2500
- The number of research and teaching staff: approximately 150
 - Departments:
 - Thomas Johann Seebeck Department of Electronics
 - Radio and Communication Engineering
 - Computer Engineering
 - Computer Control
 - Computer Science
 - Informatics

Department of Informatics

- Research and teaching staff 41 people
- Number of students in our study programs: approx. 1500
- Qualifications
 - PhD: 17 members
 - M.Sc.: 24 members, among them 12 PhD students

Department of Informatics: Research Areas

- e-Government
- Information systems
- Socio-technical systems
- Data mining and big data

Agent-oriented modelling (AOM)

The Art of Agent-Oriented Modeling Leon S. Sterling and Kuldar Taveter

Other relevant articles

Miller, T.; Lu, B.; Sterling, L.; Beydoun, G.; Taveter, K. (2014). Requirements Elicitation and Specification Using the Agent Paradigm: The Case Study of an Aircraft Turnaround Simulator. IEEE Transactions on Software Engineering, Vol. 40, 1007–1024

Mahunnah, M.; Norta, A.; Ma, L.; Taveter, K. (2014). Heuristics for Designing and Evaluating Socio-Technical Agent-Oriented Behaviour Models with Coloured Petri Nets. In: Proceedings of the IEEE COMPSAC 2014 (438–443). IEEE.

Norta, A.; Mahunnah, M.; Tenso, T.; Taveter, K.; Narendra, N.C. (2014). An Agent-Oriented Method for Designing Large Socio-technical Service-Ecosystems. In: IEEE 10th World Congress on Services (242–249). IEEE.

Why "agent-oriented"?

What is agent?

- An active entity as opposed to a passive entity
- An entity that can act in the environment, perceive events, and reason
- An entity that acts on behalf of someone or somebody

Agent

- Agent is an entity that perceives and affects its environment and performs reasoning
- Agent is:
 - reactive;
 - proactive;
 - social.
- Agent interacts in an asynchronous way

The abstract agent architecture

The execution loop of an abstract agent

while the agent is unfulfilled do
 sense the environment;
 update the knowledge base;
 reason;
 choose actions;
 act;
 end while

Anthropomorphic qualities

- Beliefs
- Responsibilities
- Expectations
- Capabilities
- Goals
- Desires
- Intentions

Socio-technical system

- A software intensive system that has defined operational processes followed by human operators and which operates within an organization
- A system that contains both a social aspect, which may be a subsystem, and a technical aspect

The conceptual space (metamodel)

Three vertical perspectives required

- Behaviour
- Interaction
- Knowledge

The Viewpoint Framework

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models and motivational scenarios
Design	Agent models, acquaintance model, and interaction models	Knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

The Viewpoint Framework

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

Concepts for goal models

Goal

- Functional goal
- Quality goal

Role

What is goal?

- Dream with a deadline 🙂
- A particular state of affairs intended by one or more agents

Two kinds of goals

- Functional goal: a goal that captures one or more desired scenarios. Example: attend the lecture
 - Quality goal: quality requirement of the achievement of the functional goal. Example: attend the lecture attentively

What is role?

- Some capacity or position that the system requires in order to achieve its goals
- Examples

Goal model

- Hierarchy of goals
- Roles associated with goals
- Quality goals attached to goals

Notation for goal models

Symbol	Meaning
	(Functional) Goal: To-Do goal
	Quality Goal: To-Be goal
	Quality Goal: To-Feel goal
Ť.	Role
	Relationship between goals
	Relationship between goals and quality goals

An excerpt of the project motivation model

High-level motivation model for the ATS

High-level motivation model for the aircraft turnaround process

Goal model

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models and motivational scenarios
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

High-level motivational scenario

ROLE AND ORGANIZATION MODELLING

Part IV

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models and motivational scenarios
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

Role model

- Role models are orthogonal to goal models
- A role model consists of the following four elements to describe the role:
 - Role name: A name identifying the role
 - Description: A textual description of the role
 - Responsibilities: A list of responsibilities that the agent playing the role must perform in order for a set of goals and their associated quality goals to be achieved
 - Constraints: A list of conditions that the agent playing the role must take into consideration when exercising its responsibilities

Role models: Pilot

Role ID: R1

Name: Pilot

Description: The pilot is a person who operates an aircraft and directs the airline staff, including the crew.

Responsibilities:

- 1. Operate aircraft
- 2. Direct airline staff
- 3. Indicate when aircraft is in position to initiate turnaround

Constraints:

Role models: Crew

Role ID: R2

Name: Crew

Description: The crew directs and provides services to passengers.

Responsibilities:

- 1. Instruct passengers to embark the aircraft
- 2. Instruct passengers to disembark the aircraft
- 3. Check cabin service

Constraints:

Goal Model: Manager

Role ID: R6

Name: Manager

Description: The manager is responsible for allocating resources and coordinating staff.

Responsibilities:

- 1. Coordinate airport staff
- 2. Allocate resources

Constraints:

Role model: Ground staff

Name: Ground staff

Description: The ground staff prepares the aircraft for arrival and departure, and loads and unloads the baggage.

Responsibilities:

- 1. Load baggage
- 2. Unload baggage
- 3. Position airbridge
- 4. Remove airbridge
- 5. Position wheel chocks
- 6. Remove wheel chocks
- 7. Attach tug

Constraints:

Role model: Passenger

Role ID: R10

Name: Passenger

Description: The passenger is a person who embarks and disembarks the aircraft to fly between destinations.

Responsibilities:

- 1. Board the aircraft
- 2. Disembark the aircraft

Constraints:

- 1. Check-in on time
- 1. Cooperate with the crew and airline ground staff

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models and motivational scenarios
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

The organization model

- The model that represents relationships between the roles of the socio-technical system
- There can be different types of organizational relationships:
 - Is controlled by
 - Between a "boss" and his subordinates
 - Is benevolent to
 - Between self interested roles
 - Is peer to
 - Between equal roles
 - Is dependent for resource

...

Aggregation relationships

Organisation model: Aggregation

Passenger

Organisation Model

Control relationships

Organisation model

Peer relationships

Crew

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models and motivational scenarios
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

Concept for domain models

Domain entity

What is domain entity?

- A modular unit of knowledge handled by a sociotechnical system
- Examples

Domain model

- Domain model represents the knowledge within the system that the system is supposed to handle
- A domain model consists of domain entities and relationships between them. A domain entity is ? A domain model relates domain entities to roles

Domain model

DECIDING SOFTWARE AGENTS

Part VI

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

- We now need to decide the types of components – agents – of the sociotechnical system
- Why agents?
 - Proactivity
 - Reactivity
 - Social nature

What is agent?

- An active entity as opposed to a passive entity
- An entity that can act in the environment, perceive events, and reason
- An entity that acts on behalf of someone or somebody

Agent

- Agent is an entity that perceives and affects its environment and performs reasoning
- Agent is:
 - reactive;
 - proactive;
 - social.
- Agent interacts in an asynchronous way

The abstract agent architecture

The execution loop of an abstract agent

while the agent is unfulfilled do
sense the environment;
update the knowledge base;
 reason;
 choose actions;
 act;
 end while

Agent model

The purpose of an agent model is to map roles to agents of specific types

Agent model

Agent Model

MODELLING "WHO GOES WITH WHOM?"

Part III

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

Acquaintance model

The acquaintance model complements the agent model by outlining interaction pathways between the agents of the system

Acquaintance model

Acquaintance Model

MODELLING AGENT INTERACTIONS

Part III

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

Interaction model

- Represents an interaction pattern between agents
- Is based on responsibilities defined for the corresponding roles
Two kinds of interaction models

- Pure interaction models
- Protocol models

Interaction diagram: Prepare arrival

Interaction diagram: Handle baggage

Interaction Model

Interaction Diagram

Handle baggage

Interaction diagram: Deboard

Interaction Model

Interaction Diagram

Interaction diagram: Board

Interaction Model

Interaction Diagram

Board

Interaction diagram: Prepare departure

Interaction sequence diagram: Maintain aircraft

Interaction Model

Interaction-Sequence Diagram Maintain aircraft

Interaction sequence diagram: Service aircraft

Interaction protocol: Board

Interaction Model

Interaction Protocol

Board

Interaction protocol: Maintain aircraft

Interaction Model

Interaction Protocol

Maintain aircraft

MODELLING THE KNOWLEDGE BY AGENTS

Part III

The Viewpoint Framework

	Viewpoint aspect		
Abstraction layer	Interaction	Information	Behavior
Analysis	Role models and organization model	Domain model	Goal models
Design	Agent models, acquaintance model, and interaction models	Agent knowledge model	Scenarios and agent behavior models
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping

Agent knowledge model

- Elaborates the domain model
- Represents the knowledge that the agents of the system have about their environment and themselves
- Can be viewed as an ontology providing a common framework of knowledge for the agents

Knowledge Model

UML-like notation

The Viewpoint Framework

	Viewpoint aspect			
Abstraction layer	Interaction	Information	Behavior	
Analysis	Role models and organization model	Environment model and domain knowledge model	Goal models	
Design	Agent models, acquaintance model, and interaction models	Knowledge model	Scenarios and agent behavior models	
Prototyping	Interaction prototyping	Information prototyping	Behavior prototyping	

Agent behaviour model

Agent behaviour model addresses what an individual agent does

The abstract agent architecture revisited

The execution loop of an abstract agent

while the agent is unfulfilled do
sense the environment;
update the knowledge base;
 reason;
 choose actions;
 act;
 end while

Prototyping

- A prototype by a third-year undergraduate software engineering student at the University of Melbourne, Australia, with no previous experience in agent-oriented software engineering
- A Master's thesis by a M.Sc. student from Tallinn University of Technology, Estonia, who is an airtraffic controller studying software engineering, and had undertaken one subject on agent-oriented modelling

A visiting scholar to the University of Melbourne, Australia, who is a software engineer with a master's degree and over ten years experience specialising in software for air-traffic control, but with no previous experience with agent-oriented software engineering.

Simulation environment

Simulation

🗕 🗆 🔀 🖪 Airport

_	
	1.00
	.

Scheduled Arrival	Arrival Time	Scheduled Depart	Departure Time	Arrival Status	Departure Status	
Sat Jul 31 23:20:0	Sun Aug 01 00:30	Wed Aug 04 05:0	Wed Aug 04 05:0	LATE ARRIVAL	LATE DEPARTURE	4
Sat Jul 31 22:35:0	Sun Aug 01 00:34	Sun Aug 01 05:15	Sun Aug 01 05:16	LATE ARRIVAL	LATE DEPARTURE	Ε
Sun Aug 01 01:20	Sun Aug 01 00:51	Sun Aug 01 05:50	Sun Aug 01 05:49			
Sun Aug 01 01:30	Sun Aug 01 00:58	Sun Aug 01 06:00	Sun Aug 01 06:03		LATE DEPARTURE	
Sun Aug 01 01:25	Sun Aug 01 01:09	Sun Aug 01 06:45	Sun Aug 01 06:54		LATE DEPARTURE	
Sun Aug 01 02:15	Sun Aug 01 01:40	Sun Aug 01 04:45	Sun Aug 01 04:46		LATE DEPARTURE	
Sun Aug 01 02:20	Sun Aug 01 01:47	Sun Aug 01 05:00	Sun Aug 01 04:55			
Sun Aug 01 02:20	Sun Aug 01 01:52	Sun Aug 01 05:10	Sun Aug 01 05:20		LATE DEPARTURE	
Sun Aug 01 02:25	Sun Aug 01 01:53	Sun Aug 01 04:00	Sun Aug 01 03:57			
Sat Jul 31 21:20:0	Sun Aug 01 01:56	Sun Aug 01 05:35	Sun Aug 01 05:37	LATE ARRIVAL	LATE DEPARTURE	
Sat Jul 31 19:45:0	Sun Aug 01 01:58	Sun Aug 01 05:00	Sun Aug 01 04:55	LATE ARRIVAL		
Sun Aug 01 01:00	Sun Aug 01 02:16	Sun Aug 01 05:00	Sun Aug 01 04:57	LATE ARRIVAL		
Sat Jul 31 23:50:0	Sun Aug 01 02:31	Sun Aug 01 05:00	Sun Aug 01 05:02	LATE ARRIVAL	LATE DEPARTURE	
Sun Aug 01 03:05	Sun Aug 01 02:36	Sun Aug 01 05:55	Sun Aug 01 05:56		LATE DEPARTURE	
Sun Aug 01 03:20	Sun Aug 01 02:42	Sun Aug 01 05:40	Sun Aug 01 05:47		LATE DEPARTURE	
Sun Aug 01 03:45	Sun Aug 01 03:16	Sun Aug 01 08:00	Sun Aug 01 08:00			
Sun Aug 01 03:40	Sun Aug 01 03:20	Sun Aug 01 04:55	Sun Aug 01 05:02		LATE DEPARTURE	-
Sun Aug 01 03:50	Sun Aug 01 03:22	Sun Aug 01 07:15	Sun Aug 01 07:36		I ATE DEPARTURE	-

GOVIEW THE

Arrival Stand	On-Block Time	Departure Stand	Off-Block Time	Arrival Status	Departur	
65R	Mon Aug 02 12:59:0	62R	Mon Aug 02 14:32:0			
06M	Mon Aug 02 13:01:0	06M	Mon Aug 02 13:43:0			
33M	Mon Aug 02 13:03:0	21M	Mon Aug 02 20:16:0			
56R	Mon Aug 02 13:09:0	56R	Mon Aug 02 13:29:0			
02M	Mon Aug 02 13:13:0	02M	Mon Aug 02 13:50:0			1
61M	Mon Aug 02 13:15:0	56R	Mon Aug 02 14:37:0			1
60L	Mon Aug 02 13:19:0	60L	Mon Aug 02 14:43:0			1
62L	Mon Aug 02 13:22:0	120M	Mon Aug 02 15:27:0	POTENTIAL ARRIVAL CONFLICT		
49L	Mon Aug 02 13:25:0	130M	Tue Aug 03 13:52:0			1
04M	Mon Aug 02 13:27:0	04M	Mon Aug 02 14:01:0			1
09M	Mon Aug 02 13:30:0	09M	Mon Aug 02 13:41:0			1
12M	Mon Aug 02 13:33:0	12M	Mon Aug 02 14:06:0			1
16M	Mon Aug 02 13:35:0	16M	Mon Aug 02 14:18:0	POTENTIAL ARRIVAL CONFLICT		1
53L	Mon Aug 02 13:37:0	53L	Mon Aug 02 14:24:0			1
62R	Mon Aug 02 13:42:0	62L	Mon Aug 02 15:52:0			1
49R	Mon Aug 02 13:45:0	49R	Mon Aug 02 14:48:0			1
25M	Mon Aug 02 13:49:0	25M	Mon Aug 02 14:27:0			
05M	Mon Aug 02 13:51:0	05M	Mon Aug 02 14:14:0			-

cogræen Player Gallery 唒

ZUICN LITTE

A ROSE Custom Map sunflowe... Magical

🕌 Airport

Results

- Systematic method for agent-oriented requirements elicitation and modelling
- Three implementations proving the usability of the method: two in Australia and one by a M.Sc. student in Estonia

Two M.Sc. projects with Jeppesen (subsidiary of Boeing)

- Agent-oriented modelling and simulation of airlines:
 - Model an airline
 - Simulate an airline
 - Demonstrate bottlenecks and possible savings by simulation
 - Business processes management of airlines
 - Model business processes of an airline
 - Simulate business processes of an airline
 - Demonstrate bottlenecks and possible savings by simulation

Project 1: Overall goal model for an airline

Project 1: Interaction model of filing a flight plan

EU project "Modelling crisis management for improved action and preparedness" (CRISMA)

EU-FP7 Theme 10: Security Call	FP7- SEC-2011.4.1-1 Crisis management modelling tool <u>Type of funding scheme:</u> Collaborative Project <u>Type of project:</u> Integration Project Work programme topics addressed: SEC-2011.4.1-1
Duration	42 months Start date: 1 st March 2012, End date: 30 th August 2015
Effort	1097,85 person months
Cost/EU-Funding	appr. 14.4 m Euro / appr. 10.1 m Euro
WWW	www.crismaproject.eu
Contacts	Anna-Mari Heikkilä, VTT Crisma.Coordinator@vtt.fi

CRISMA Participants

Purpose of CRISMA: Enhancing tabletop exercises by computer-based simulations

±...

 $^{\rm 2}$ for reasons of simplicity teach and train are addressed under the same subgoals

³ e.g. educate on survival skills

³ "set up ... " subgoals should also be elaborated in the HOW goal model. Encompasses also the TEACH GENERALIZING subgoal of Pilot C.

⁴ "physical training", includes e.g. evacuation exercises, traffic accident recovery trainings, routine emergency trainings, etc.

 $^{\rm 5}$ communication infrastructure, road network, electricity ...

⁶ Terms "Assess", "Identify" and "Evaluate" inconsistently used among pilots.

⁷ includes also what if scenarios

Modelling crisis management for improved action and preparedness (CRISMA, EU FP7 project): Cooling of houses 1

 \bigcirc

CRISMA Modelling crisis management for improved action and preparedness (CRISMA, EU FP7 project): Cooling of houses 2

CRISMA Pilot A simulation system: configure power

Compare

Modelling crisis management for improved action and preparedness (CRISMA, EU FP7 project): Resource management

DESIGN OF PUBLIC SERVICES

Public services in Estonia

- Around 2500 public services available
- e-Banking, e-Tax Board, e-Police, e-Voting, e-School, e-Health, e-Road Administration, e-Social Insurance Board, e-Prescription, e-Business Registry, e-Land Registry, e-Building Registry.... e-Residency
- For example, it takes only 15 minutes to establish a company online

Levels of e-government services

- 1. Information (website)
- 2. One-way interaction (application form can be downloaded)
- 3. Two-way interaction (application form can be submitted)
- 4. Transaction (pre-filled forms can be completed and submitted, payments can be made, status can be followed)
- 5. Proactive and integrated (service is proactive and as much as possible automated, e.g. submitting tax file declarations in Estonia)

Proactiveness in e-governance

- Flipping the service delivery from "pull" to "push"
- Seamless delivery of timely information and services
- Rooted in needs, preferences, circumstances, life events, and location
- Personalised, adaptive, discreet, unobtrusive

E-government service or <u>public service</u> as a sociotechnical (human activity) system

- A software intensive system that has defined operational processes followed by human operators and which operates within an organization
- A system that contains both a social aspect, which may be a subsystem, and a technical aspect

Service design

- Creates ecosystems of connected services
- Considers all the links in the customerprovider chain across:
 - Channels;
 - Organizational silos;
 - Information Systems.
- Requires holistic thinking about <u>customer</u> <u>experience</u>

Notation for goal models

Symbol	Meaning
	(Functional) Goal: To-Do goal
	Quality Goal: To-Be goal
	Quality Goal: To-Feel goal
Ŷ. ↓	Role
	Relationship between goals
	Relationship between goals and quality goals

Good public service

Registering a vehicle

Public service for registering a vehicle

KULDAR TAVETER

Muudan rolli »

MAANTEEAMET

Avaleht

Tere, Kuldar Taveter!

+ 🞩 https 🔒 eteenindus.mnt.ee/pages/main.jsf — Maanteeameti e-teenindus

Oled sisenenud Maanteeameti e-teenindusse. Vali vasakult menüüst sobiv kategooria ja soorita toiming või vaata informatsiooni.

SÕIDUK

Toimingud sõidukitega »

Sõiduki ostu-müügi vormistamiseks või kasutajate muutmiseks ja sõiduki ajutiselt registrist kustutamiseks ava sõiduki detailvaade ja vajuta vastavale nupule. Omanikuvahetuse vormistamiseks peab mõlemal osapoolel olema ID-kaart või Mobiil-ID ning PIN koodid. Omanikuvahetuse algatab sõiduki vana omanik.

 $\overline{}$

ÜHISTRANSPORT

Sõiduki taustakontroll »

Sõiduki tehniliste andmete ja ajaloo päring, osalemine kindlustusjuhtumites.

Juhiloa vahetamine »

Teie juhiluba ET704469, kehtivusega kuni 04.11.2020, saab vahetada e-teeninduses. Juhiloa varguse korral saate väiksema riigilõivu eest juhiluba taotleda büroos.

POSTKAST (0)

VÄLJUN

- Minu sõidukid »
- Liiklusteooria proovieksam »
 - Teekaamerad »

toimingute tegemiseks eteeninduses ja büroodes. Volituste andmiseks on vajalik ID-kaart või Mobiil-ID.

0

C Reader

Room for improvement?

Proactiveness introduced

Goal model "Support decisions"

Goal model "Stay healthy"

GOAL MODEL FOR ADVISING ON MEDICAL TESTS

GOAL MODEL FOR GENERATING PROFILE

GOAL MODEL FOR ORDERING TEST PACKAGES

GOAL MODEL FOR RECORDING TEST RESULTS

DOMAIN MODEL

MAPPING ROLES TO AGENTS

Thank you! Output <pOutput</p> Output Output Output Ou

